Print proto_ipms or *_ipm objects
Generics for IPM classes
# S3 method for class 'proto_ipm'
print(x, ...)
# S3 method for class 'simple_di_det_ipm'
print(
x,
comp_lambda = TRUE,
type_lambda = "last",
sig_digits = 3,
check_conv = TRUE,
...
)
# S3 method for class 'simple_dd_det_ipm'
print(x, comp_lambda = TRUE, type_lambda = "last", sig_digits = 3, ...)
# S3 method for class 'simple_di_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'simple_dd_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'simple_di_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'simple_dd_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'general_di_det_ipm'
print(
x,
comp_lambda = TRUE,
type_lambda = "last",
sig_digits = 3,
check_conv = TRUE,
...
)
# S3 method for class 'general_dd_det_ipm'
print(x, comp_lambda = TRUE, type_lambda = "last", sig_digits = 3, ...)
# S3 method for class 'general_di_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'general_dd_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'general_di_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
# S3 method for class 'general_dd_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)
An object of class proto_ipm
or produced by make_ipm()
.
Ignored
A logical indicating whether or not to calculate lambdas for the iteration kernels and display them.
Either 'all'
or 'stochastic'
. See
lambda
for more details.
The number of significant digits to round to if
comp_lambda = TRUE
.
A logical: for deterministic models, check if population state
has converged to asymptotic dynamics? If TRUE
and the model has not
converged, a message will be printed.
x
invisibly.
For printing proto_ipm
objects, indices are wrapped in
<index>
to assist with debugging. These are not carried into the model,
just a visual aid.